光化學通過激發(fā)底物或光催化劑來生成反應中間體,然后可利用這些高能物質的反應性引發(fā)各種轉化。流動裝置中使用的透明管道直徑較窄,可確保光完全穿透,均勻的照射和停留時間可實現(xiàn)選擇性轉化,避免因過度照射而導致的產品分解。因此,光化學流動方法已被用于生成多種反應中間體,在許多情況下,這可以實現(xiàn)更直接的合成路線,其中給定波長的光子充當無痕試劑當量。
2024-07-16
多重耐藥細菌菌株(MDR)已成為我們衛(wèi)生系統(tǒng)面臨的日益嚴峻的挑戰(zhàn),導致多種經(jīng)典抗生素今天在臨床上無活性。由于從頭開發(fā)有效抗生素是一個非常昂貴和耗時的過程,因此篩選天然和合成化合物庫等替代策略是尋找新先導化合物的簡單方法。因此,我們報告了對以吲唑、吡唑和吡唑啉為關鍵雜環(huán)部分的十四種藥物樣化合物的抗菌評估,這些化合物的合成是在連續(xù)流動模式下實現(xiàn)的。研究發(fā)現(xiàn),幾種化合物對葡萄球菌屬和腸球菌屬的臨床和MD
2023-08-08
一種新的光化學流動工藝,可以高產率和高通量地生成苯炔前體,并且可以輕松分離出數(shù)克數(shù)量的產品。 該過程利用光激發(fā)硝基芳烴進行無催化劑光化學重排,其中涉及已完全表征的環(huán)狀羥胺中間體。 所得前體通過第二個光化學流動過程轉化為苯炔,在用疊氮化物和苯乙烯配合物捕獲時產生雜環(huán)目標。 值得注意的是,當苯炔前體與仲胺反應時,通過第三次光流轉化以良好的產率獲得了多種芳基三嗪。 這代表了合成這些物質的模塊化方法,避免使用具有潛在爆炸性的重氮鹽。 最終,與批量處理相比,使用單個高功率 LED 光源(365?nm,可調節(jié)輸入功率)的三種光化學流程具有明顯的優(yōu)勢。
2023-08-07
提出了一種連續(xù)流動工藝,該工藝能夠在光化學條件下安全地生成和衍生苯。 新的大功率 LED 燈發(fā)出 365 nm 的光,這有助于實現(xiàn)這一目標。 由此產生的流動過程基于可調節(jié)背壓調節(jié)器有效控制氣態(tài)副產品的釋放,并在 3 分鐘的短停留時間內提供一系列雜環(huán)產品。 該方法的穩(wěn)健性在benzotriazoles, 2H-indazoles 和各種呋喃衍生加合物的快速生成中得到證明,通過簡單且易于擴展的流動協(xié)議促進這些重要的雜環(huán)支架的制備。
2022-09-05
使用小型連續(xù)流動系統(tǒng)可以有效利用高反應性中間體。 通過將高質量和熱傳遞相結合,除了提高光化學反應的效率外,流動化學還提供了獲得以前未描述的反應性的途徑。 這提供了進入以前無法獲得的化學空間并加速發(fā)現(xiàn)新反應的機會。 雖然本文描述的一些領域仍然不發(fā)達,特別是氮烯的使用,但流動方法的發(fā)展可能會加速它們的廣泛使用并推動該領域的新創(chuàng)新。
2022-06-17
從羧酸中光化學擠出 CO2 是化學和區(qū)域選擇性功能化反應的有效策略。這部分是由于與氣態(tài) CO2 的釋放相關的巨大驅動力。 另一方面,在有用化學品的合成中使用 CO2 作為 C1 結構單元為安裝羧酸官能團提供了令人興奮的機會。
2022-03-04